Ultrasonic distance finder circuit

Ultrasonic distance finder circuit

Reviewed by: Mackenzie

On: 16 Feb, 2019

Viewed:269 times - 2 day, 6 hour, 8 minute, 20 second ago

Downloaded: 0 times -

Category: Circuit

Ultrasonic distance finder circuit Rating:
43 out of 100 based on 306 user ratings

The circuit described here uses ultrasonic oscillations and operates based on the propagation velocity of these oscillations in the air. Thus, we can easily determine the distance of two points if the time within which the wave travels this distan...

The circuit described here uses ultrasonic oscillations and operates based on the propagation velocity of these oscillations in the air. Thus, we can easily determine the distance of two points if the time within which the wave travels this distance is measured. There are three main categories of distance measurement methods in use: a) By mechanical means. b) By optical means. and c) By electronic means. Almost all methods are based on some form of radiation such as radio waves, light, sound, or infrared radiation. Given the propagation rates of these radiations, distance measurement is a matter of determining the wave transition time from one point to another. Infrared radiation is mainly used for long distances (in the order of a few kilometers) since it is relatively easy to form. For distances over 100 km, electronic devices are used, but their effectiveness is influenced by factors such as atmospheric conditions and visibility. With the advancement of space technology, laser systems have been used in conjunction with electro-optical systems to determine the terrestrial and off-shore of artificial satellites.
ultrasonic distance finder circuit.png

The ultrasonic distance meter
The sounds, ultrasounds and other known frequency fluctuations have a certain known propagation velocity in the air. Therefore, the time required to propagate the distance between the target transmitter and vice versa can be used to determine the distance. The emitted wave gives a start pulse to a numerator running at the same frequency as the propagation velocity in cm / sec. The signal received by the reflection provides the expiration pulse. In this way, the numerator gives the distance that the wave has spread. Of course, it is necessary to reduce the distance of the distance since we only want the transition distance. The following figure shows what we have described in a functional chart. Transmitter, receiver, numerator with digital pointer and oscillator that is excited or interrupted by the transmitted and received pulses.
the ultrasonic distance meter.png

The schematic diagram of the circuit
The transmitter consists of the gates N1 and N2 which form a bridge circuit. The US1 ultrasonic converter is connected between the 2-port outputs to ensure an alternating peak-to-peak voltage of 18 V between them (with 9V supply). N1 also works as an oscillator stimulated and de-stimulated by N3. Its frequency is determined by R1 and depends on the type of inverter used. In this construction, a 40 kHz TCO is used, but others can work satisfactorily.

The frequency of the oscillator is set to R1 as near as possible to 40kHz because this is the maximum efficiency frequency of the inverter. The receiver is very simple due to the experimental character of the circuit.

Two successive common transmitter circuits (T5, T6) amplify the signal received by the US2. T7 acts as a threshold detector as it runs when the voltage at its base is less than the supply (-6V), i.e. T7 is when the alternating voltage in the P2 rotor is greater than 1.2V from peak to peak
One more oscillator is around IC3 (R17, R18, P3 and C9). IC3 is mainly a 2-14 divisor with a built-in oscillator. The frequency is set at 17190Hz with P3, since the sound velocity in the air is 343.8m / sec at 20, C = (34380cm / sec) / 2 = 17190. A 2.5-digit digital voltmeter is placed in place of a numerator. IC1 directly leads the markers Dp2 to Dp4, which are interconnected to IC1 with the transistor T2 to T4.

IC2 supplies with the stabilized voltage 5V the counter section and the circuit indicators. IC1 has the ability to drive 4 pointers but it does not need more than 3. Nearly all other components are used to synchronize the various stages. This mainly indicates the preset pulse and frequency variations at different points in the circuit. With an oscillator frequency of 17190 Hz, output Q14 of IC3 will have a signal frequency of 1Hz. (17190: 2-14). This output is connected to the reset input by the N7 inverter and a second monodonator (N8, R20, C11). With the arrival of a negative pulse face at Q14, a short pulse occurs at ICI input 5. Instead, a positive pulse front at Q14 gives a short pulse at the repositioning input. The signal from Q14 is inverted by N7 and is driven into two further monodonts: one to drive the transmitter (N3, R10, C5) and one connected to the FF1 flap re-positioning input. The clock timing input of FF1 is connected to T7 and output Q to N5.

Therefore, IC1 receives a resetting pulse with each positive pulse arrival arrival at the Q14 output of IC3 which automatically cancels the counter. At the same time, the monovodule is activated around N3 (with a negative pulse front at the N7 output) allowing the oscillator to emit a signal over 0.3 msec. During this time US1 emits about 12 pulses (40Hz) which are then reflected by the target and received by US2. At the same time as the ultrasonic signal is emitted, FF1 is repositioned and retained by the N4 monolar (nearly 2msec). The output Q then comes to a logical state "1", and the signal from the 17190Hz oscillator is led to the IC1 counter via N5. Once the amplified reception signal reaches the clock input of FF1, output Q goes to a logical "0" state and N5 blocks the IC1 counter input. At that moment the counter has measured the actual distance in centimeters. N6 activates the latch, advancing to it the contents of the counter which are then displayed by the pointers. The counter is reset from the next positive pulse front to Q14, allowing a new measurement to be obtained. The previous mark is assembled until the arrival of information for a new measurement. The whole layout has the ability to take new measurements every second.

Let us now see some necessary details on circuit operation. The US2 converter is natural to capture the transmitted signal immediately unless we do something to avoid it. If we do not avoid it, the counter will be cut off immediately and we will not be able to count. This problem is solved if we assure such conditions that the residence time in the constant state of N4 is sufficiently greater than the time required for the emission of the magnitude (2 msec).

During this time, the floppy flop remains in the reset state irrespective of the presence or absence of a signal at the clock input. After 2 ms, FF1 is released so that the direct signal is not confused with the reflected signal. The only downside to this delay is the failure to measure distances of less than 35 cm. The circuit does not include an AGC rating or an automatic error detector for the sake of simplicity.


Counter and pointer stages can be constructed separately. Note that one end of R8 is connected to the dotting point of Dp2 while the other one to the ground. We recommend using neroboard for the rest of the circuit. Ensure that the connection cables are small, and that there is a separation between the receiving step and the transmission stage. The two inverters are placed side by side without touching, and facing in the same direction. Prefer 9V batteries because the power supply may create instability. Consumption is rather high, of 250 mA, which can not be avoided by using LED indicators. However, the batteries are not depleted quickly because the circuit is only used for a few seconds at a time. An operating test can be done without the use of an oscillograph. Simply disconnect the connection between N5 and clock and connect the second to terminal 4 of the IC3. (output Q8). On the pointer you must read "128". When the clock input is shorted to the ground, the display must be "000". This is the way to test both the IC3 and the oscillator. The broadcast is easily controlled by listening to US1. Although the 40kHz signal is not heard, the output of each waveform sounds like a "click" every second. The receiver test is not easy, but the presence of a 4.5V DC voltage on the T5 and T6 collectors is a sign of normal operation.
Once this is done, the whole circuit can be set and controlled. Turn the P2 cursor to the maximum and mark the mark. This indication is generated by the counter between 2 pulses (the latch and the reset) that are half a second apart. It is worth bearing in mind that this will be the permanent indication in the absence of a reflection signal. Point the circuit to an object or wall one meter apart and a surface of at least one square meter perpendicular to the transmission direction. Slowly turn P2 back to the point where you'll get a meter mark. If you do not get it and the mark is 40-60cm, you need to remove just a little bit of the two metrics and use a larger capacitor in place of C6.

Once you have set the P2 setting for 1m. you can proceed to the next step, which is to set the 40Hz frequency. With the circuit in the same position, turn P1 until some indication appears. The process continues until the indicator for any P2 setting is lost. Place the circuit at a distance of 5m from the target and reset P2 for the correct display. Finally, reattach the circuit just 3m away from the target. set P3 for exact indication and finish!
With the original circuit, we achieved very good results and precision ± cm for distances up to 7-8m. The accuracy depends on ambient temperature, atmospheric pressure and humidity because the sound velocity is affected by these factors. The measuring range (range) of the instrument can be expanded by increasing the amplification of the receiver or the emission voltage. If the meter is equipped with instrument length compensation, it will be able to perform wall-to-wall precision measurements.

Resistors: R1-R7 = 22Ω | R8 = 270Ω | R9 = 33ΚΩ | R10 = 330ΚΩ | R11,R12,R14 = 1Μ5 | R13 = 4K7 | R15 = 470ΚΩ | R16 = 22ΚΩ | R17 = 560ΚΩ | R18 = 47ΚΩ | R19,R20 = 10ΚΩ | P1 = 10K | P2 = 4K7 | P3 = 10K
Capacitors: C1 = 10μF/10V | C3 = 100n | C4 = 1n | C5 = 820p | C6,C7 = 1n5 | C8 = 2n2 | C9 = 270p | C10,C11 = 220p | C12 = 10μF/16V | C13 = 1n
Semiconductors: T2-T4 = BC141 | T5,T6 = BC549C | T7 = BC559C | IC1 = 74C928 | IC2 = 7805 | IC3 = 4060 | IC4 = 4027 | IC5,IC6 = 4093
Other: Dp2-Dp4 = 7760(CC) | US1 = MA40L1S | US2 = MA40L1R | 9V battery | Plastic Box

Related Posts

Recognize 5 more important things in car electrical system

Based on the definition of electrical system or wiring diagram is a circuit that works use proper electricity by shifting electron from one power to another object for recent purpose. Better you kn...

Comprehensive theory of car electrical system - Definition, Components and Circuits

A car is not only engine, but also frame or chassis and electrical. Although, not main component but car engine need another component to works it needs electrical system to make combustion. For ex...

How ignition coil works on your car

Ignition system in modern era didn't need a distribution or commonly known as distributorless ignition system (DIS), using ignition more than one or each cylinder served with one ignition coil said...

2000 Mercury Cougar Fuse Diagram

2000 Mercury Cougar Fuse Panel Diagram Wiring Forums 10/08/2017 · Looking for info regarding 2000 Mercury Cougar Fuse Panel Diagram...

How relay is works and simple wiring sample

In this occasion, lets learn about relay which we can found this tool in our electrical's automotive. How a relay works 12v? the relay works only use one circuit to switch on a second circuit.its m...

How To Read Car Wiring Diagrams For Beginners | FREE AUTOMOTIVE WIRING DIAGRAMS

Over the decades car wiring has been standardized based on color code. How to read the diagram need skill aim to recognize what kind of colors used for? without learning the code color and the flow...

As the fastest growing demand of circuit and wiring diagram for automotive and electronics on internet based on different uses such as electronic hobbyists, students, technicians and engineers than we decided to provide free circuit and wiring diagram base on your needed.

To find circuit and wiring diagram now a day its easy. E-learning through internet as a right place to search an exact circuit and wiring diagram of your choice and it's much fun and knowledgable. On internet you will find thousands of electronic circuit diagrams some are very good designed and some are not. So you have to modify them to make them according to your needs but some circuits are ready to make and require no changes.

There are many categories of circuit and wiring diagrams like automotive, audio circuits, radio & RF circuits, power supply circuits, light circuits, telephone circuits, timer circuits, battery charger circuits etc. There are many types of circuit and wiring diagrams some are very easy to build and some are very complicated, some are so small and some contain huge list of parts.

We provides free best quality and good designed schematic diagrams our diagrams are free to use for all electronic hobbyists, students, technicians and engineers. We also provides a full educational system to students new to electronics. If you are new to electronics you are a student or a electronic hobbyist and want to increase your knowledge in electronics or want to understand electronics in a very easy way so this is the right place for you we provide electronics beginner guide tutorials to easily understand complicated electronic theory. Our mission is to help students and professionals in their field.